

Co-funded by the Erasmus+ Programme of the European Union

Applied Remote Sensing

Cornelia Gläßer, Uni Halle Science Education for Sustainable Human Health

Prof. Dr. Cornelia Gläßer

Martin Luther University Halle-Wittenberg, Germany Institute of Geosciences and Geography

- Education in Geography and Geosciences
- PhD and Habilitation in multi and hyperspectral remote sensing

Research interests:

- hyperspectral remote sensing for geo-, hydro- and biochemical parameter in different landscape types and climatic regions
- Environmental Remote sensing of mining areas and whole mine cycle
- Multitemporal approaches, phenology of crops and natural phenology
- Long term experiences in Elearning and eAssessment
- Active in leading of national and international scientific organization

Objectives

- Introduction
- Short history
- Asssessment and selection of remote sensing data for thematic topics
- Application in global, regional and local scale
- Copernicus programme
- Market today and in the future
- Cooperation with Armenia

Source: ESA

Introduction

"Man must rise above the Earth, to the top of the atmosphere and beyond, for only thus will he fully understand the world in which he lives."

Socrates, classical Greek philosopher, circa 470-399 BC

- Remote Sensing data with a long history
- RS data in your daily life
- Why remote sensing data in environmental sciences ?
- Changing data policy
- RS in the daily life

Short history

Requirements for remote sensing

Development of:

- Plattforms
- Photography
- Photogrammetry

Daguerrotypy, Museum Vevey

Zeppelin and first aerial photgraphy

"Drones" - past and future

Animatronics ZDF/BBC

Platforms

Fixed wing

Starrflüg

ler

http://media.defenceindustrydaily.com/images/AIR_UAV_RQ-11 Raven lg.jpg

ENVPRO

Oktokopter

http://www.utas.edu.au/__data/assets/image/000 3/276618/IMG_7323.jpg

Ballon

http://kansan.com/media/2013/04/geology_jjak owatz21.jpg

Platforms

- Helicopter and aircrafts
- Satelliten

http://blog.lidarnews.com/nasa-tests-lidar-2, http://radio.aalto.fi/en/research/space_technolo gy/hutscat-mounted.jpg

Satellites

- First: Explorer 5, August 1959
- Today:more than 400

ESA: Sentinel-Family

Sentinel-2: scanning every part of the planet every 5 days

Sentinel-2A and 2B fly in tandem on a polar orbit. One orbit takes 90-100 minutes, with 50 minutes between the satellites. As the Earth rotates below, the two satellites see different things to form a detailed, composite image.

© DW

Source: ESA

Landsat 8, 2013 https://directory.eoportal.org/image/image_galler

e/explorer_6.jpgSenti

Field work and spectral methods

Providing information on platforms and the manifold measurement set-ups

Spectral exploration methods

ASD FieldSPec Pro FR and operator notebook¹⁾

Spectroscopic field measurements and field sampling during summer 2010. The ASD FieldSpec is placed in a backpack.

Set up for spectroscopic lab measurements using an artificial light source.

Providing training in operating the department's instruments and accessories Providing good-practice in how to conduct spectral measurements properly

ASD FieldSpec* Dual RS³ Operation Manual 2010.; http://www.spectralevolution.com/sitebuilder/images/Trigger_leaf_dip4-178x204.png.http://www.spectralevolution.com/sitebuilder/images/Getac2-107x210.png, http://www.spectralevolution.com/sitebuilder/images/Desktop_contact_probe-201x162.jpg

Mapping in the past and present

Chimborazo, Ecuador Alexander von Humboldt, 1839

Global Monitoring

- Satellite data the only one existing data base for global monitoring, like:
 - Vegetation
 - Meteorological and hydrological parameters
 - Ocean
 - Atmosphere

ESA's Climate Change Initiative (CCI) SMOS, Aquarius, and Soil Moisture Active Passive satellite missions

Land Surface Anomaly, Temperature, NASA

Earth observation in a global scale

- NASA Earth Observatory
- Time Series of MODIS data

15

Ozon hole over Antarctica Mission: Global Ozon Monitoring Experiment GOME Time series 1995 - 2019

See: 25 years ozon monitoring as video

https://www.dlr.de/eoc/de/desktopdefault.aspx/tabid-14195/24618_read-65956/

ESA's SMOS Mission

Soil Moisture Index Map

Corona data 1964

Greenland Ice Sheet Changes 1992-2018

Rate of elevation change of the Greenland Ice Sheet determined from ERS, ENVISAT and CryoSat-2 satellite radar altimetry (top row) and from the HIRHAM5 SMB model (ice equivalent; bottom row) over successive 5-yr epochs. Source: IMDIE Team, 202

Copernicus program of ESA

- Data
- Services
- Products

https://www.copernicus.eu/en

Deforesting

- General land use changes
- Humand related changes
- Natural related changes
- Hazards
- Different time scales

North Corea, Jim et al. 2016

Forest in Armenia

Greynon forestGreenstable forestReddeforesting 2005-2010Yellowforest degradation

Dilijan National Park is renowned in particular for its dense forest, rich biodiversity, medicinal springs, natural and cultural monuments and extensive network of hiking trails. Despite this, the park is under threat from a dense human population living there, developing infrastructure, uncontrolled tourism, illegal logging, poaching and the unsustainable use of natural resources.

ESA's EO Clinic, Company GeoVille and SIRS

1991–2019 Forest density and class, which could be used to assess and locate deforestation or forest degradation.

Plastic Litter Patches in marine environment

Class

Seawater

Seaweed Timber

Plastic

Pumice

0.8

1.0

Sea Foam

(C)

-0.2

0.0

0.2

0.4

NDVI

0.6

-0.4

555

Mediterranean Sea Sentinel 2 data ESA 2020

5

Open Space Innovation Platform – OSIP

Logos of the of the OSIP Campaign on Reselected proposals mote Sensing of Plastic Marine Litter

Urban remote sensing

- settlement development
- Green areas versus sealing
- Material types
- Tempreture, heat islands
- Health risk
- Alternative energy ...
 - •••

Yerevan, 3D model Flipped Normals

Multi-buffer ring zones around city center of Kuala Lumpur, Manila and Singapore for 1989, 2001 and 2014 map

Health risk Philipinescities , Estoke et al. 2020

Boori et al 2014

Urban system

Tereno 2019

Disasters and Natural Hazards

- Earth quake
- Volcanic eruption
- Floods
- Fires
- Droughts
- Erosion
- Landslides
- ...

International Charter Space and Major Disasters

Center for Satellite Based Crisis Information (ZKI)

Natural Hazards and Disaster

- World wide existing events and processes
- Needs just in time data, very actual, short term repetition
- Sensor related to the topic, like thermal data for fires, radar data for floods..
- Maps for emergency planning and aid
- Assessment under ecological aspects

Map Version 1 Processed Mon Aug 25, 2008 05:38:46 PM MD1

1988-12- 7 Gyumri

Center for Satellite Based Crisis Information (ZKI).DLR

RND Network

T NEWS · 2021-08-30 | [EMSN106] Wildfire in Ezcaray, Spain

MAPPING

ice Overview can use the service to use the service folio: Rapid Mapping folio: Risk and Recovery lity control r Guide

MAPPING

of Activations of Activations RSS Feed ne Manual

ND RECOVERY

of Activations of Activations RSS Feed ne Manual

EMSR517: Flood in Western Germany

Event Time (UTC): 2021-07-13 16:00 Event Time (LOC): 2021-07-13 18:00 Event Type: Flood (Riverine flood) Activation Time (UTC): 2021-07-13 17:11 Activation Status: Closed Affected Countries/Territories: Federal Republic of Germany Service Output: 27 products (80 maps) Delineation: 11 products (43 maps) Grading: 16 products (37 maps)

Authorised User:

Germany|Gemeinsames Melde- und Lagezentrum von Bund und Landern (GMLZ)

Activation Reason:

Heavy rains affected Rhineland-Palatinate area where a severe flood event is expected over the next few days along the river Moselle. The German Joint Information and Situation Centre (GMLZ) triggered the Copernicus EMS Rapid Mapping Service to monitor the flood evolution.

Forest Fires

- Increasing worldwide
- Natural and man made
- Heavy influence to human
- Heavy influence to ecosystem
- Actual monitoring
- Monitoring after the event
- Asseesment of process

Floods and long term impact to the environment

Examples from Germany

River Elbe, Mulde Saale

Extrem flood events 2002, 2006, 2010, 2013

High water level

Landsat5-TM (27.08.2002)

s km

Birger (2004)

- Upper section of rivers in old industrial and abandoned mine sites
- High concentration of contaminants in river sediments
- Activating of these sediments during extreme flood events
- River water flow through brown sites and mine dumps
- Transportation, sedimentation and

accumulation in the lower parts of the river

Martin Luther University Halle-Wittenberg Institute of Geosciences and Geography Department of Remote Sensing and Cartography

Endmember detection: classification of erosion

(A) Erosion holocene sediments

(B) Bare soils with accumulation

(C) Bare soils with crop residues

(D) vital vegetation

Low Endmember Black 100%)

High

Endmembers

White 100%)

(E) Water bodies

Composite Image from abundances A (Red)

- B (Green)
- C) (Blue)

Martin Luther University Halle-Wittenberg Institute of Geosciences and Geography Department of Remote Sensing and Cartography

Klassifikation von Hochflutsedimenten – airbone Daedalus data

Martin Luther University Halle-Wittenberg Institute of Geosciences and Geography Department of Remote Sensing and Cartography

Flood event in Germany, June 2013

SPOT-6, 06.08.2018

Iso Cluster Unsupervised Classification

SPOT-6

Segment Mean Shift

RE, 05.06.2013

Flood detection and flood mapping -- > NDVI vs. WalMa

WaLMa (Water Land Mask) (Zober 2002, Groth 2016) (NIR-(0.321*RED))*10

Impact of floodplain morphology on flood extend

Impact of floodplain morphology on flood extend

DEM 1: © LVermGeo Sachsen-Anhalt/GeoBasis-DE/BKG

Impact of flood events on plant height

Impact of flood sediments on vegetation spectra

Pot experiment (3 years)

• 4 soils with different levels of heavy metal contamination

- 5 different dominant floodplain plants
 - Artemisia vulgaris, Urtica dioica, Phalaris arundinacea, Alopecurus pratensis, Alopecurus geniculatus

Martin Luther University Halle-Wittenberg Institute of Geosciences and Geography Department of Remote Sensing and Cartography Götze et al. Cent. Eur. J. Geosci 2010

Absorption feature of heavy metal content in plants

CR1725 0,38 0,7 0,36 Low heavy metal contamination 0,34 High heavy metal contamination 0,6 0,32 **Beflectance** 0,28 0,26 0,5 Reflectance 0,4 0,3 0,24 0,22 0,2 0,2 1.660 1.690 1.720 1.750 1.780 1.600 1.630 0,1 Wavelength [nm] 0 350 550 750 950 1.150 1.350 1.550 1.750 1.950 2.150 2.350 Wavelength [nm]

Spectral measurements of the pot experiment, wetland vegetation with various heavy metal pollution

Götze et al. 2010

Results airbone Hymap data

Transfer to remote sensing data

Legend Heavy metal contamination level

> 1 low 2 moderate 3 middle-moderate 4 middle Limit for grasslands 5 high

6 critical

EnMAP HyMap from HyEurope campaigne

Related to the project EnviMetal

Quelle: http://dradiowissen.de/beitrag/phytomining-mit-pflanzen-schwermetalle-gewinnen

Background:

- Increase in frequency and intensity of flood events
- Enrichment of heavy metals (HM) in flood areas

Aim:

Spatial monitoring of floodplain ecosystems
Spatial assessing vegetation stress and potential ecotoxicological effects using FE methods

Challenges:

- Various influencing factors (vegetation, soil, terrain...)
- HM accumulation is element & plant-specific
- seasonal effects, spatial & temporal dynamics
- Natural vs HM-induced vevegtation stress

Aims in the course:

- Analysis of the relationship between vegetation spectral properties and plant parameters (growth heights, SPAD values, chemical soil and vegetation values)
- Analysis of the relationship between vegetation indices and fine relief

Measurement points

- Trimble AgGPS[®] RTK Base 450
- X, Y, Z coordinates
- Data format: shape file

Field spectra

- Measured along cross sections in representative morphological units
- ASD FieldSpec Pro FR (350-2500 nm)

SPAD-values

Vegetation heights

Chemical properties

	Concentration (mg kg ⁻¹)				
	Cu	Pb	Zn	Cd	Ni
Ø Sinks	68.19	110.64	253.00	1.54	37.24
Ø Terraces	53.33	77.40	211.77	1.16	36.71
Ø Plateaus	52.81	80.35	227.43	1.40	35.90
Ø Total	58.11	89.46	230.73	1.37	36.62
Min	40.66	60.83	165.43	0.79	31.00
Max	109.00	138.83	432.77	3.29	45.33

0.80

0.70

0.85

5

ö

0

0.1 0.3

MSI 0.70

IVDVI

0

0 Ó

Mittel Aug

C

August

0.5 0.7

0 0

Results: Correlations between vegetation spectral data, SPAD and HM values.

Darstellung der Feinmorphologie in Abhängigkeit von der räumlichen Auflösung

Riedel, 2018

Example: Assessing changes in post-mining landscapes

Remote Sensing in the mine life cycle

• Quali- and quantitative assessment of the raw material inventory

Active mining

- Monitoring of ongoing mining activities
- Mapping the spatial extend of mining areas, assessing potentiality

Reclamation

- Monitoring of bio- and geochemical processes
- Observation of mining lakes and hydrochemical parameters

Introduction anthopogenic landscapes

- Mining activties worldwide existing
- Devastation of the whole landscape
- After the period of active mining development of complete new landscape types with very special condition
- Parts of these new landscape are *new nature reserve areas, like drylands, oligotrophic areas, openland areas*

Post mining landscapes

- Complete new ecosystem, highly dynamic area
 - Anthropogenic processes (geotechnical works, reforesting, flooding of mines with surface water)
 - Natural processes (erosion, succession of vegetation, ascending ground water

Time series of Landsat TM data

Iron concentration [mg I⁻¹]

pH value

Chla-concentration [µg l⁻¹]

Vegetation is coming back!

Vegetation structures in the post mining landscape

 Areas of spontaneous succession in the open mines

 Longtime areas of succession

Classification of CASI data Sand dry lown areas, Combined Parallelepiped - Maximum-Likelihood-Algorithm

Gray hairgrass swards

Lichen and moss rich grey hairgrass swards

One plant type- *calamgrostis epigejos* as indicator for ph-values – test site Bohemia

Martin-Luther-University Halle-Wittenberg Institute for Geosciences and Geography Department of Remote sensing and Cartography

Cornelia.Glaesser@geo.uni-halle.de

Unmixing results

Beyer et al. 2012

Martin-Luther-University Halle-Wittenberg Institute for Geosciences and Geography Department of Remote sensing and Cartography

Cornelia.Glaesser@geo.uni-halle.de

Example: Advanced geological RS for laterite mapping

Example: Advanced geological RS for laterite mapping

Measuring rock samples in the lab for assessing their spectral properties

Lateritic duricrust

Target Class	Mineral Composition
Lateritic duricrust	Hematite, Quartz, Kaolinite, Boehmite, Gibbsite
Lateritic gravel	Hematite, Quartz, Kaolinite, Maghemite, Lepidocrocite
Clay zone	Quartz, Nontronite, Antigorite, Epidote, Muscovite, Diopside, Albite

Lateritic gravel

Clay zone sample

Land Use in Arid Environment

Exampe: Negev Desert in Israel

Phenology

März 20 Tel Aviv Jerusalem Negev (RapidEye image, Resa project no. 597) Heterogenous landscape Long Term Ecological Research Site

- ExpEER Ecosystem Research
- Different vegetation types with differing phenology

ENVPRO

- Annual & perennial vegetation, biolog. crusts
- Large variety and heterogenity in spatial distribution and cover density
- Sensitive response to precipitation

Aim:

Remote assessment of the phenology of the different vegetation units within the LTER site

ENVPRO

ENV PRO

Used remote sensing data

Rapid Eye data (spectral bands):

Blue	440-510 nm
Green	520-590 nm
Red	630-685 nm
Red Edge	690-730 nm
NIR	760-850 nm

http://www.dlr.de/rd/desktopdefault. aspx/tabid-2440/3586_read-5336/

RapidEye time-series in CIR (5/3/2), spatial resolution: 5 m

(01-Dec-2012)

(17-Jan-2013)

(26-Feb-2013)

ENV PRO

Results – Spatial distribution of natural vegetation

ENV

Heracleum mantegazzianum (giant hogweed):

- Short-lived shrub, height of growth: 2 5 m
- Photodermatitis on contact and sunlight
- Displacement of other species
- Increased risk of erosion at water margins
- Treatment is time-consuming and costly and requires detailed knowledge of occurrences

Photos: Meißner 2014/2015, Götze 2014

RS methods offer great potential for detecting giant hogweed!

- Only few studies available
- Basic knowledge about spectral properties is required
- Knowledge of mixed spectral signatures is crucial

Martin Luther University Halle-Wittenberg Institute of Geosciences and Geography Department of Remote Sensing and Cartography

Utilised data:

- Field spectra
- Field photos
- Field mapping data
- GPS coordinates

 Several RapidEye images, March – September 2014

> http://www.dlr.de/rd/desktopdefault. aspx/tabid-2440/3586_read-5336/

ENV PRO

1 GHW leaf I (Sweet Lake) 0,9 •• GHW leaf II (Sweet Lake) 0,8 GHW leaves (Wimm.) 0,7 0,6 0,5 0,4 •• GHW dirty leaf (Wimm.) - GHW dark green leaves (Wimm.) 0,3 0,2 0,1 750 850 950 1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250 2350 350 450 550 650 Wavelength (nm)

Visual inspection and assessment of the spectra

Integration of phenpological changes!

Martin Luther University Halle-Wittenberg Institute of Geosciences and Geography Department of Remote Sensing and Cartography

ENV PRO

Advanced data analysis: Quantification and parameterisation of spectral features (e.g.

positions and depths of absorptions) followed by statistical analyses

Martin Luther University Halle-Wittenberg Institute of Geosciences and Geography Department of Remote Sensing and Cartography

Mischspektren (weiße Blüte - grünes Blatt) 1 Generation of synthetic spectral mixtures RBK_Blatt_dunkel_2014-07-18_Wi -RBK_Bluete_weissl_2014-07-18_Wi 0,9 Mischspektrum 90:10 Mischspektrum 80:20 Mischspektrum 70:30 0,8 Mischspektrum 60:40 0,7 — Mischspektrum 20:80 — Mischspektrum 10:90 0,6 Reflexionsgrad 0,3 0,2 0,1 1350 Wellenlänge (nm)

Martin Luther University Halle-Wittenberg Institute of Geosciences and Geography Department of Remote Sensing and Cartography

Analysis of RapidEye data for <u>spatio-temporal</u> mapping GH occurences

	10.03.	27.03.	16.04.	04.06.	04.07.	17.07.	06.09.
Multiband Thresholding	-	-	x	x	x	(x)	-
VIO (Permutation)	-	-	-	x	-	-	-
Matched Filtering	-	-	-	x	-	-	-

Dates of RapidEye imagery and applicability of different detection methods

Martin Luther University Halle-Wittenberg Institute of Geosciences and Geography Department of Remote Sensing and Cartography

How to select remote sensing data für a special topics and objectives?

- Is the topic relevant to information in remote sensing data?
- Which scale is relevant?
- Which spectral infromation I need?
- Which spatial infromation I need?
- Which actuality is necessary?
- Which temporal resulution) need?
- Budget!!!
- Huge data sets of free available remote sensing data and software
- Goodle Earth Engine, European Open Science Cloud, Zoom Ertrh and others.

Conclusion

- Short overview about applied remote sensing
- Selected exampes related to scales, topics and remote sensing data
- Remote Sensing data today basic geodata
- Geodata as " Ressources of the 21 century"
- Free data and software available
- Extremly crowing market

Next lectures on Saturday GIS and Geodata Management Practical Remote Sensing and GIS

YOU ARE WELCOME!

