

Co-funded by the Erasmus+ Programme of the European Union

The Environmental Science Education for Sustainable Human Health in commemoration of Professor Armen Saghatelyan

6 – 13 September 2021

TECNIC

Geochemical background

Geochemical background is the average content of analyte in various environmental compartments according to the results of the study of their natural variation (statistical parameters of distribution) within the boundary of geologically and/or landscape-geochemically homogeneous units¹.

The geochemical background is a relative measure to distinguish between natural element or compound concentrations and anthropogenicallyinfluenced concentrations in real sample collectives².

Integrated method

Integrated method

Co-funded by the
Erasmus+ Programme
of the European Union

Co-funded by the Erasmus+ Programme of the European Union

Integrated method

Enrichment factor (EF)³:

 $EF = (C_i/C_T)/(B_i/B_T),$

where:

 C_i is the concentration of an ith element in sample, C_T is the concentration of proxy-element in the same sample, B_i and B_T are **background values** of ith element and proxyelement, respectively.

EF levels classification. EF<2 - deficiency to minimal enrichment, 2<EF<5 - moderate enrichment, 5<EF<20 - significant enrichment, 20<EF<40 - very high enrichment, EF<40 - extremely high enrichment. <u>Geoaccumulation index (Igeo)⁴</u>

$$I_{\text{geo}} = \log_2\left(\frac{C_n}{1,5B_n}\right),$$

where:

 C_n is the concentration of n-element in sample, 1,5 is used as a factor for minimizing a probable geogenic effects-caused variation of the **background value**, $B_n - a$ background value of n-element.

Igeo levels classification. Igeo ≤ 0 – non contamination, $0 < Igeo \leq 1$ - light to moderate, $1 < Igeo \leq 2$ - moderate, $2 < Igeo \leq 3$ - moderate to strong, $3 < Igeo \leq 4$ - strong, $4 < Igeo \leq 5$ - strong to extremely serious, $5 < Igeo \leq 10$ - extremely serious

³Johnson, C.C., Demetriades, A., Locutura, J., Ottesen, R.T., (2011) Mapping the Chemical Environment of Urban Areas, p. 616 ⁴Muller, G. (1969) Index of geoaccumulation in sediments of the Rhine River. Geol. J., 2, 108–118

$$K_{c} = \frac{C_{i}}{C_{f}}, (3)$$
$$Z_{c} = \sum_{i=1}^{n} K_{c} - (n-1), \qquad (4)$$

where:

Kc is the concentration coefficient, C_i is the content of the ith element, C_f is the **geochemical background** of the same element,

n is the number of elements in the same sample with $K_c > 1$.

Zc level classification: $Z_c < 16$ -low level, $16 < Z_c < 32$ -moderately hazardous level, $32 < Z_c < 128$ -hazardous level, $Z_c > 128$ - extremely hazardous level. Summary concentration index (SCI)⁵ $K_{MAC} = \frac{C_i}{C_{MAC}}, \quad (5)$ $SCI = \sum K_{MAC}. \quad (6)$

where:

 K_{MAC} is the concentration coefficient, C_i is the content of the ith element, C_f is the Maximum acceptable concentration of the same element.

SCI level classification: SCI < 8 - allowable $8 < Z_c < 16$ - low, $16 < Z_c < 32$ - medium, $32 < Z_c < 128$ - high, SCI > 128 - extremely high.

¹Saet Y.E., Revich B.A., Yanin E.P., (1990) Environmental Geochemistry. Nedra, p. 335 ⁵RA Government, (2005) Decree About the order of evaluation of economical activities – caused impact on soil resources, Decis. N-92-N. URL

http://www.arlis.am/DocumentView.aspx?DocID=13401

Potential ecological risk index (PERI)6

$$C_{i} = \frac{C_{n}}{C_{f}},$$
$$E_{r} = T_{r} \times C_{i},$$
$$PERI = \sum_{i=1}^{n} E_{r}^{i}$$

where:

 E_r is the potential risk factor for each element;

 T_r – the toxicity exposure ratio (TER) of the element,

 $C_{\rm f}-$ a **background value** of the element in sample,

 C_n – the content of the element in the sample.

 E_r and PERI classification:

$E_{\rm r} < 40 - {\rm low},$
40 <e<sub>r <80 - moderate,</e<sub>
80 < E _r <160 - considerable
$160 < E_r < 320 - high,$
$E_r > 320$ - very high.

PERI <150 - low, 150 <PERI <300 - moderate, 300 <PERI <600 - considerable, PERI > 600 - very high.

ENV

<u>Non-carcinogenic risk assessment</u>⁷

 $CDI_{children/adults} = (C \times EF \times ED \times IRS \times CF)/(AT \times BW),$

 $HQ^i = CDI^i/RfD^i$,

 $HI = \sum_{i=1}^{n} HQ^{i}.$

where:

CDI is the chronic daily intake of metal; C is the element concentration in soil (mg/kg), EF - exposure frequency; ED-exposure duration; IRS id the ingestion rate; AT (average time) (AT=365×ED), BW (average body weight, kg).

Non-carcinogenic risk classification: HQ/HI<0.01 – no shading, 0.01<HQ/HI<1 – purple, HQ/HI>1 – blue.

Carcinogenic risk⁷

 $CDI_{canc} = (C \times IFS \times CF)/(AT \times LT),$

 $CR^i = CDI^i/SF^i$,

where:

IFS is the ingestion rate-age adjusted; CF is the Conversion factor: 10⁻⁶ kg/mg. LT is the lifetime duration: 70 years.

Carcinogenic risk classification: No shading - $<10^{-6}$, yellow - 10^{-6} - 10^{-4} , red - 10^{-4} - 10^{-2} , black - $>10^{-2}$,

⁷RAIS, 20217. Risk Exposure Models for Chemicals User's Guide Elec. document. Risk Assess. Inf. Syst. URL https://rais.ornl.gov/tools/rais_chemical_risk_guide.html (accessed 04.09.2021).

SOME INTERESTING CASES

Mo pollution levels distribution in Yerevan⁸

Co-funded by the Erasmus+ Programme of the European Union

⁸Tepanosyan, G., Sahakyan, L., Belyaeva, O., Maghakyan, N., Saghatelyan, A., 2017. Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere 184, 1230–1240. https://doi.org/10.1016/j.chemosphere.2017.06.108

Environmental geochemistry workflow⁹

⁹Tepanosyan, G., Sahakyan, L., Maghakyan, N., & Saghatelyan, A. (2020). Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city. Environmental Pollution, 261. https://doi.org/10.1016/j.envpol.2020.114210

Co-funded by the Erasmus+ Programme

of the European Union

Thank you for your kind attention!

