

Erasmus+ Programme of the European Union

The Environmental Science Education for Sustainable Human Health in commemoration of Professor Armen Saghatelyan

ECNIC

Environmental Radiation Protection Radionuclides of Natural and Artificial Origin

Olga Belyaeva

Center for Ecological-Noosphere Studies (CENS) of NAS RA 68 Abovyan street, 0025 Yerevan Armenia

E-mail: olga.belyaeva@cens.am

10 September 2021 – Friday

"Environmental Radiation Protection" module for Environmental Protection and Nature Management profession

This curriculum designed by O. Belyaeva and F.P. Carvalho

4 ECTS, 120 hours

Course goal is to develop students' knowledge about natural and artificial radioactivity, application of radioactive materials and environmental consequences of such applications, principals of radiation protection, to familiarize students with the analytical methods and equipment that applied in environmental radiological monitoring, to develop skills of human dose and dose rate estimation

Topics of "Environmental Radiation Protection" Curriculum

- 1. Introduction. The structure of atoms. Stable and unstable Isotopes. Radioactive decay law. Radioactive and secular equilibrium
- 2. Ionizing radiation interaction with matter. Biological effects of ionizing radiation
- 3. The detection and measurement of radioactivity
- 4. Environmental radioactivity. Cosmogenic and terrestrial radionuclides. NORM and TENORM.
- 5. Nuclear weapon testing and environmental consequences
- 6. Nuclear power generation. Environmental Impacts of nuclear energy
- 7. Nuclear wastes: Generation and management issues
- 8. Nuclear events and their impact on global environment
- 9. Radioactivity monitoring
- 10. Principles of radiation protection. International conventions on nuclear safety and security. Nuclear forensics

MEVIPRO and Educational and Research Laboratory for Environment Protection (#ERLEP) created favorable conditions for:

 Hosting professionals from other organizations (including potential employers) for lecturers and sharing experience

- - Collaborative learning and
 Inquiry-based learning

NORM issues in mining centers of Armenia

Study objects

The aim of the study

to perform the evaluation of radioactivity levels in urban soils (gross alpha/beta activity; U-238, Th-232 and K-40) and carry out a dose rate assessment and life time cancer risk evaluation in the biggest mining centers of Armenia, i.e., at the metal mining towns of Kapan and Kajaran

Initial information: Geology

Kapan

Jurassic volcanic (basalt, andesite) and sedimentary (breccia, limestone, dolomite and clay slate) formations

Kajaran

Tertiary volcanogenic and intrusive rocks: **monzonites** and porphyritic **granites-granodiorites**

Initial information: Geochemical prospecting

Kapan and Kajaran

1950-s, 1970-s, airborne gamma-ray spectrometry survey (Gromov and Koltsov expedition)¹

Kapan

No U mineralization known

Kajaran

Syunik U ore field Several U depositions are located in vicinities (Lernadzor, Pkhrut, etc.)

Distribution of U ore field in Armenia²

¹ Republican Geological Fund [Electronic resource] // Natural resources of the Republic of Armenia. 2020. URL: <u>https://www.geo-fund.am/en</u> ² Aloyan P.G. Uranium-bearing geological formations of Armenia. Yerevan: GEOID, 2010. 185 p. (in Armenian)

Initial information: Mineral deposits and exploration

Kapan

Copper-pyrite and gold-polymetallic deposits Underground mining Processing plant (ore crushing, milling, and flotation) Two operating tailing repositories Abandoned quarry Numerous waste-rock piles

Kajaran

Copper-Molybdenum deposit Open-pit mining Processing plant (ore crushing, milling, and flotation) Three conserved tailing repositories

Initial Information: Comprehensive geochemical studies

Kapan¹

Geochemical soil survey Study of surface water pollution

Kajaran²

Geochemical soil survey

Study of surface water, airborne dust, agricultural soil and crops pollution

Study of heavy metals transfer in "irrigation water-soil-crops" system

Study of fodder crops and milk

Pilot study of man biosubstrates

Study of gross beta activity distribution pattern Study of indoor radon

ELSEVIER iº	Science of the Total Environ Contents lists availe Science of the To purnal homepage: www.els	weekt 639 (2018) 900-909 Weble at ScienceDirect Dtal Environment sevier.com/locate/scitoteny		ten Environment	l			
Continuous impact of m human health Gevorg Tepanosyan *, Lilit Saha The Center for Loningical Nonophere Studies, National	iining activities on s akyan, Olga Belyaeva, Sh I Academy of Sciences, Adovian-Git, Yereva	soil heavy metals leve ushanik Asmaryan, Armen ! 10025, Armenie	ls and Saghatelyan	Parater Parater	6 m			
HIGHLIGHTS	GRAPHICAL ABS	FRACT		Sec. 12	PERS	ME	E	
Anthropogenically predominant groups of elements include Mo, Cu, Zn and Po. Superposition of natural and anthropo- genic factors formed highly polluted areas. Multi-elemental non-carcinogenic risk to children health detected.		Man share of new out and shared			G			
ARTICLE INFO	ABSTRACT		ALC: NO	ALL P	24	-	LANS.	The second
Article history: Received 30 January 2018 Received in revised form 11 May 2018 Accepted 17 May 2018 Available entities societ	Soils samples collected during mining area in Armenia were order to reveal soil heavy meta impact of mining activities. In Mo, Mn, Ti, and Fe.	different geochemical surveys of the c subjected to the multivariate geostat als spatial distribution pattern and asse addition, human health risk assessmer		C. T				et fel
Reprodui Recymotic Recymotic of politikan Maring era Maring era Maring era Maring era Maring era	The results of Principal Compt by the spatial distribution for an erated. The first anthropogen their accesses the state of the state load to the alteration of the sh load to the alteration of the sh load to the alteration of the sh load at the with the intersity HeidalDr risk assessment show adult and children's health with element detected Special alteration was basis for the development and planning.	ulti of Principal Component Analysis and Cluster Analysis we spaced distribution formed on shared here over tak hord-anity cressories PD and Zh while TL Mr. Fer and Co with the nature indigroup. Mercores, the sharing result and the suspensition the alterization of the sharpescal and as while the Human does the alterization of the sharpescal and such that the suspensition and the share of the sharpescal and such that the sub- relation of the sharpescal and such that the share of the alterization of the sharpescal and such that the only studied elser and children's boath in some sampling sites during the where and children's boath in some sampling sites during the where in blueforgatters was -1 indicating an alterest health effect to or the development and unplementation of risks reduction m reg.		Medical Geolo				<u>y</u>
		1. Introduction	200	1.0	singer	Sec.	Francis .	- selle
* Corresponding author. E-mail addresses geverg tepansiyan@vens.am. lim.sahaiyam@cens.am. [L. Sahaiyan], olga.belyaev ihuahanik.asmaryan@cens.am. [S. Asmaryan], ecoo	. (G. Tepanonyan), zabeciscam, (O. Belyaeva), entrösciam (A. Sagharolyan).	Mining industry is both a lea a country and a significant sour metals (Anju and Banerjee, 20 et al., 2017; Ding et al., 2017; 2008). In this respect, the ant	-				in	R.
https://doi.org/10.1016/j.actioteux-2018.05.211 0048-0697/c 2018 Elsevier R.V. All rights reserved.				(Oplane	tearth'	J	Robert B. lose A. Cen	Olle Selinus Finkelman Iteno (Eds.)
				<u>IIII</u>	UGS		2	Springer

¹ Saghatelyan A., Sahakyan L. Belyaeva O. Polluted Irrigation Waters as a Risk Factor to Public Health. Chemistry Journal of Moldova. General, Industrial and Ecological Chemistry. 2012, 7 (2), p. 84-88. DOI: <u>dx.doi.org/10.19261/cjm.2012.07(2).11</u>
 ² Saghatelyan, A., Gevorgyan, V., Arevshatyan, S., Sahakyan, L., 2008. Ecological and geochemical assessment of environmental state of the city of Kajaran. CENS, Yerevan (in Armenian)

Verification of data: gross alpha/beta counting

РКБ4-1eM (Russia)

Alpha/Beta Counting System iMatic (Canberra)

Verification of data: Outcomes

- 1. Previous data was not correlated with the newly obtained results
- 2. Data and existed soil samples were not enough to achieve the stated goal

Collection of data: Selection of achieve soils and additional sampling

1. Selection of 10 samples per a city based on gross alpha/beta activities levels

2. Additional sampling od waste-rock piles, tails and sludge from operating tailing repository

EN

Lab work: Gamma spectrometry

Gamma spectrometry system by CANBERRA

HPGe detector with energy resolution of 1.8 keV FWHM for the 1332 keV energy line of ⁶⁰Co; DSA-1000 multichannel analyser; Genie2000 and LabSOCS

Co-funded by the Erasmus+ Programme of the European Union

Analysis of data

- 1. Descriptive statistics
- 2. Calculation of radiological hazard and health risk indices

Radium Equivalent Activity (*RaEq*): Outdoor Gamma Absorbed Dose Rate (*ODRA*): Annual Effective Dose Equivalent: Excess Lifetime Cancer Risk (ELCR):

 $RaEq = C_U + 1.43C_{Th} + 0.077C_K$ $ODRA = 0.462C_U + 0.604C_{Th} + 0.0417C_K$ $AEDE = ODRA \times DCF \times OF \times T$ $ELCR = AEDE \times DL \times RF$

 Visualization of the spatial distribution of soil gross alpha/beta activity, radionuclide activity concentration and levels of calculated radiological hazard and health risk indices using ArcGIS software

Results: NORM in mining wastes

Results: NORM in urban soils

Results: Excess lifetime cancer risk

The mean level of ELCR in **Kapan**, calculated at 1.9E-04, was notably lower than world average.

In **Kajaran**, the ELCR values exceed the world average level of 2.9E-04.

Conclusion¹

The main conclusion drawn from the radioactivity surveys is that in Kapan the soil radioactivity levels, although enhanced by metal mining, are not a significant risk factor to human health. In Kajaran, the soil radioactivity levels in some areas were above the background values, but radionuclides originated in a natural and unmodified geogenic source and not from mining activities.

Generally with this study no significant radiological risks were identified in the region in relationship with copper and gold-polymetallic ore mining, and transport of naturally occurring radionuclides from quarries and waste rock piles into urban soils. Further investigations on enhanced environmental radioactivity in relationship with other phases of the milling process, namely ore smelters, are still needed in order to complete the assessment of occupational radiation exposure to NORMs

¹Belyaeva, O., Pyuskyulyan, K., Movsisyan, N., Saghatelyan, A., Carvalho, F.P., 2019. Natural Radioactivity in Urban Soils of Mining Centers in Armenia: Dose Rate and Risk Assessment. Chemosphere 225, 859e870. https://doi.org/10.1016/j.chemosphere.2019.03.057

NORM and Cs-137 in urban environment

Environmental radioactivity studies in Yerevan

The aim of this study was to assess the activity concentrations of naturally occurring ²²⁶Ra, ²³²Th, ⁴⁰K and artificial ¹³⁷Cs radionuclides in the soils of Yerevan and reveal potential factors of their redistribution and assess dose rate and related human health risk.

Co-funded by the Erasmus+ Programme of the European Union

Initial information

Geological structure(Avetisyan et al., 1974), Potential sources of NORM (Geological Service of RA, 2019)

Radioecological studies based on geochemical survey Ananyan & Nalbandyan 2001; Nalbandyan & Karapetyan2003,

Planning and Optimization

Initial geochemical survey Sc: 1:25000 1356 soil samples Soil samples selected for alpha/beta counting 278 soil samples Soil samples selected for NORM and Cs-137 identification 52 soil samples

EN

Special pattern and dose rates

Geochemical assessment of distribution patterns of NORM

Spatial distribution of NOR in the soil of Yerevan mainly depends on the geological structure of the area. The highest activity levels of NOR were observed in the northern and central parts where igneous rocks are dominating. The geological basis of the southern part of Yerevan consists of alluvial deposits characterized by lower levels of NOR. Operation of Yerevan TPP (natural gas combustion) and the metal refinery plants that are situated in the south of the city did not affect enhancing activity concentration of radionuclide in adjacent soils. On the contrary, natural stones and gypsum mines in the eastern part were revealed as possible sources of NOR.

Activity concentrations of Cs-137 in soils of Yerevan¹

Global radioactive fallout was estimated as the main contributor of artificial ¹³⁷Cs in Yerevan. The activity concentration of fallout radionuclide ¹³⁷Cs was within the range typical for altitudes studied, the highest values of ¹³⁷Cs activity were observed at the highest altitude located in the north-west of Yerevan.

¹Belyaeva, O., Movsisyan, N., Pyuskyulyan, K., Sahakyan, L., Tepanosyan, G., Saghatelyan, A., 2021. Yerevan soil radioactivity: Radiological and geochemical assessment. Chemosphere 265, 129173. https://doi.org/10.1016/j.chemosphere.2020.129173

Co-funded by the Erasmus+ Programme of the European Union

Main sources and distribution pattern of Cs-137 in Armenia

Global distribution of Cs-137 and Armenia

Re-constructed global 137Cs fallout as of 1 January, 1970 (Bq/m²) (Aoyama et al. J Environ Monit, 2006)

Graphic reconstruction of the path of the Chernobyl radioactive plume (*IRSN*, 2005)

Aim of the study

This particular research was done to study the altitude-dependent distribution of ¹³⁷Cs in soils and dry atmospheric depositions. Observation stations were arranged on the southern and eastern slope of the Aragats mountain massif.

Judgmental sampling

LEGEND

- Dry deposition
- sampling locations
- Snow sampling locations
- Rivers
 Settelments
 ANPP
 Altitude, m a.s.l.
 - High : 4054 Low : 818.1

LEGEND

- Soi sampling locations
- Aragats Northern Summit
 Rivers
-
- Settelments
- ANPP
- Altitude, m a.s.l. High : 4054 Low : 818.1

Results²

Cs-137 loading in dry atmospheric deposition in Aragats massif

¹ Pyuskyulyan, K., LaMont, S.P., Atoyan, V., Belyaeva, O., Movsisyan, N., Saghatelyan, A., 2020. Altitude-dependent distribution of 137Cs in the environment: a case study of Aragats massif, Armenia. Acta Geochim. 127–138. https://doi.org/https://doi.org/10.1007/s11631-019-00334-0

Cs-137 activity concentrations in soils of Aragats massif

Continuation: NORM Baselines and Cs-137 National Inventory

Co-funded by the Erasmus+ Programme of the European Union

Thank you for your kind attention!

Olga Belyaeva

Center for Ecological-Noosphere Studies (CENS) of NAS RA 68 Abovyan street, 0025 Yerevan Armenia E-mail: <u>olga.belyaeva@cens.am</u> <u>http://cens.am/</u>

