

Co-funded by the Erasmus+ Programme of the European Union

The Environmental Science Education for Sustainable Human Health

in commemoration of Prof. Armen Saghatelyan

9 September 2021

TÉCNICO

Co-funded by the Erasmus+ Programme of the European Union

Environmental Toxicology

Dr. Meline Beglaryan

PhD, Lecturer, The Department of "Environmental Protection and Nature Management", ISEC Head of Expert Group at the IACRA, CENS

ISEC

Environmental Toxicology Course

Exposure Pathway. Route of Exposure.

chemical

Chemistry

experime

gchemistry

windustry. Instrument substance

Physiolog

Anatom

reagents labora

substances reaction number substance

research

dicine

science

f clinical R

Environmental Toxicology

the study of poisons around us

Multidisciplinary science

Xenobiotics

	Classification	Categories
	Physical state	Gas, liquid, solid
}	Chemical structure	Aromatic amines, aliphatics, glycols
	General action	Air pollutants, chronic poisons, industrial toxins
	Poisoning potential	Slightly toxic, moderately toxic, supertoxic
	Effect	Carcinogens, mutagens, teratogens
	Target organ	Neurotoxins, hepatotoxins, nephrotoxins
	Mechanism of action	Stimulants, inhibitors
	General or use class	Plastics, organic chemicals, heavy metals, food additive
	Labeling requirements	Oxidizer, acid, explosive

Environmental Toxicants

Hazardous substances that can have adverse effects...

Environmental Toxicants (2)

Environmental Toxicants (3)

Exposure Pathway and Route of Exposure

Toxicity

The state of being poisonous and general term used to indicate adverse effects

Duration

Acute toxicity - sudden symptoms last for a short period of time (~24h).

Chronic toxicity symptoms that are of a long, continuous duration.

Location

Local toxicity - the symptoms are restricted to the site of initial exposure.

Systemic toxicity - adverse effects occur at sites far from the initial site of exposure

How is toxicity determined since chemicals vary in toxicity?

Target Organ Toxicity

Each organ will respond to a toxicant in a different way.

Hematotoxicity (e.g. by benzene, chlordane, naphthalene)

Hepatotoxicity (e.g. chronic ethanol toxicity, organic chemicals)

Nephrotoxicity (e.g. some xenobiotics, such as lead, cadmium, heroin)

🔊 Neurotoxicity (e.g. botulin toxin, tetrodotoxin, hexachlorophene)

Dermatotoxicity (e.g. organic solvents, numerous industrial agents)

Pulmonotoxicity (e.g. asbestos fibers, coal dust, beryllium)

Dose

How harmful a chemical is depends on:

- Size of dose over a certain period of time
- **How often** exposure occurs, who is exposed
- How well the body's **detoxification system** work
- Substance's **properties** (e.g. solubility, persistence)

47 yeares

"All substances are poisons; there is none which is not a poison. The **right dose differentiates** a poison and a remedy."

"We combined all your medications into ONE convenient dose."

Dose

Effective Dose

at which the desirable

response is observed

Toxic Dose

at which toxicity is present in test organisms Lethal Dose

resulting in the death of the test organism

Don't compare the dose at which an LD₀₁ occurs for toxicant A with the dose at which an LD₅₀ occurs for toxicant B.

		Agent	LD ₅₀ (mg/kg)	Toxicity
		Ethyl alcohol	9,000	
ш	L .	Sodium chloride	4,000	
	I .	BHA/BHT (antioxidants)	2,000	Slight
ם		Morphine sulfate	900	
\geq	>	Caffeine	200	Moderate
A	1	Nicotine	1	High
X		Curare	0.5	
ш		Shellfish toxin	0.01	
		Dioxin	0.001	
		Botulinum toxin	0.00001	Extreme

©Introduction to Food Toxicology. 2nd Edition

Dose-Response Relationship

Dose-response relationship – when a consistent mathematical relationship describes the **proportion of test organisms responding to a specific dose** for a given exposure period.

The individual dose required to kill **50%** of a population of test animals.

Factors Influencing Dose-Response

- Route of exposure, exposure conditions
- Age and gender characteristics
- Genetic and health status

Effects of chemical interaction

chemical interactions can decrease or multiply the harmful effects of a toxin

Effect	Relative Toxicity (hypothetical)	Example
Additive	2 + 3 = 5	Organophosphate pesticides
Synergistic	2 + 3 = 20	Cigarette smoking + asbestos
Potentiation	2 + 0 = 10	Alcohol + carbon tetrachloride
Antagonism	6 + 6 = 8 or 5 + (-5) = 0 or 10 + 0 = 2	Toluene + benzene or caffeine + alcohol or BAL + mercury

Mathematical Representation of Chemical Interaction

Toxicokinetics

Toxicodynamics

Absorption

3 primary routes of absorption

Distribution

- physical and chemical properties of the toxicant
- concentration of the toxicant in the blood and in the tissues
- volume of blood flowing through a specific tissue
- **•** tissue specificity or preference of the toxicant
- presence of special "barriers" to slow down
 - toxicant entrance

Metabolism (biotransformation)

The goal is to facilitate detoxication, thus producing water-soluble metabolites - more readily eliminated by the urinary and biliary systems.

The highest capacity for biotransformation is in the liver.

21

Excretion

Toxicants or their metabolites are eliminated from the body by

many different routes.

Exhalation

Respiratory (*exhalation*)

Additional Routes

(saliva, sweat, hair, skin, nails, milk)

Information Sources

Pesticides

Nutrition

Plant health

European Food Safety Authority

https://www.efsa.europa.eu/en

IARC Monographs on the Identification of Carcinogenic Hazards to Humans

US EPA

Lead and compounds (inorganic) CASRN 7439-92-1 | DTXSID2024161 • IRIS Summary (PDF) (15 pp, 128 K)

Key IRIS Other EPA Values Information		Related Links
Noncancer Asse	• <u>CDC</u>	
Reference Dose for Oral Exposure (RfD) (PD Information reviewed but value not estimated	Guidelines on Lead • EPA Chemicals Dashboard - Lead and	
Reference Concentration for Inhalation Exp Not assessed under the IRIS Program.	<u>compounds</u> (inorganic)	
Cancer Asses	Chemical	
Weight of Evidence for Cancer (PDF) (15 pp	Lead and	
WOE Characterization	Framework for WOE Characterization	compounds (inorganic)
B2 (Probable human carcinogen - based on sufficient evidence of carcinogenicity in animals)	Guidelines for Carcinogen Risk Assessment (U.S. EPA, 1986)	Pb

https://www.epa.gov/iris

ATSDR

ATSDR Agency for Toxic Substances and Disease Registry

Agency for Toxic Substances and Disease Registry

CSPECE Disaster Recovery Supplement Learn how ATSDR is protecting children's environmental health after disasters.

Public Health Assessments and Health Consultations

Evaluations to find out if people are

being exposed to hazardous

Toxicological Profiles Comprehensive evaluation of toxicological information on a substance

> State Cooperative Program The Program funds 28 partner organizations to build their ability to

Most Viewed
Lead
<u>Arsenic</u>

Aluminum **Benzene**

(f) 💟 🛅 🕘

TSP Home

Toxicological and Health Professionals

A-Z Index

ATSDR - Q

Advanced Search

The Agency for Toxic Substances and Disease Registry (ATSDR), based in Atlanta, Georgia, is a federal public health agency of the U.S. Department of Health and Human Services. ATSDR protects communities from harmful health effects related to exposure to natural and man-made hazardous substances. We do this by responding to environmental health emergencies; investigating emerging environmental health threats; conducting research on the health impacts of hazardous waste sites; and building capabilities of and providing actionable guidance to state and local health partners.

https://www.atsdr.cdc.gov/

🕈 TSP Home		
Substances List	Lead	
Land	CAS ID#: 7439-92-1	
Lead	Affected Organ Systems: Neurological (Nervous System), Renal (Urinary System or Kidneys)	
Toxicological Resources Listing	Cancer Classification: Please contact NTP, IARC, or EPA with questions on cancer and cancer classification.	
Health Effects of Exposures to	Chemical Classification: Inorganic substances	
Substances	Summary: Lead is a naturally occurring bluish-gray metal found in small amounts in the earth's crust. Lead can be found in	
Chemical Classifications	all parts of our environment. Much of it comes from human activities including burning fossil fuels, mining, and manufacturing. Lead has many different uses. It is used in the production of batteries, ammunition, metal products (solder	
Community Members	and pipes), and devices to shield X-rays. Because of health concerns, lead from gasoline, paints and ceramic products, caulking, and pipe solder has been dramatically reduced in recent years.	
Emergency Responders	*CDC has updated its recommendations on children's blood lead levels. Experts now use an upper reference level value of	
Medical Education and Training	97.5% of the population distribution for children's blood lead. In 2012-2015 that value is 5 micrograms per decilite to identify children with blood lead levels that are much higher than most children's levels. The information on thi	
Toxicological and Health	refers to CDC's previous "blood lead level of concern" of 10 µg/dL. This information will be updated in future ToxProfile and ToxFAO editions. To learn more about CDC's updated recommendations on children's blood lead levels, please visit:	

http://www.cdc.gov/nceh/lead/ACCLPP/blood_lead_levels.htm.

Search

Co-funded by the Erasmus+ Programme of the European Union

Thank you for your kind attention!

KEEP CALM AND STUDY TOXICOLOGY

MENV PRO

Meline Beglaryan meline.beglaryan@cens.am