

Erasmus+ Programme of the European Union

The Environmental Science Education for Sustainable Human Health

6 – 13 September 2021

TÉCNICO

_ISBOA

Erasmus+ Programme of the European Union

Food safety risk assessment

Davit Pipoyan Doctor of food science (Italy)

Food security vs food safety

Co-funded by the Erasmus+ Programme of the European Union

RISK ANALYSIS

Modern strategy for ensuring food safety

Characterization of food safety systems

Traditional Food Safety System

> Reactive approach Main responsibility of government No structured risk analysis

Relies in end product inspection and testing

Modern food safety system

Relies on process control

Principle of Risk Analysis

Overall objective for food safety: to ensure human health protection

- principles apply equally to issues of **national food control** and **food trade** situations
- should be applied **consistently** and in a **non-discriminatory** manner
- **precaution** is an inherent element

Principles of Risk Analysis – Definitions

HAZAR

campylobacter in raw chicken is a hazard

eating undercooked chicken is a risk

Principles of Risk Analysis -Transparency

- Food safety and protection of consumer interests are an increasing concern for:
- ✓ Governments
- ✓ Trade organisations
- ✓ Non-governmental organisations
- ✓ General public

• **Consumer confidence** is a key indicator of a successful food policy and is therefore a primary goal

RISK ASSESSMENT

Hazard identification	 Identification of known or potential health effects associated with a particular agent (i.e. types of injury and conditions of exposure. 	
Hazard characterization	 The qualitative and/or quantitative evaluation of the nature of adverse effects associated with biological, chemical and physical agents which may be present in food. 	R
Exposure assessment	 The qualitative and/or quantitative evaluation of the degree of intake likely to occur. 	
Risk characterization	 the previous steps into an estimation of the adverse effects likely to occur in given population, including attendant uncertainties. 	K

Q

I. Risk assessment

Definition of risk assessment includes:

- •Quantitative risk assessment
- •Qualitative risk assessment
- •Indication of the attendant uncertainties

II. Risk management

• The process of weighing policy alternatives in the light of the results of risk assessment and, if required, selecting and implementing appropriate control options, including regulatory measures.

III. Risk communication

• **Risk communication** is the exchange of information and opinions concerning **risk** and **risk-related factors** among risk assessors, risk managers, consumers and other interested parties.

 ideally all stakeholder groups (industry and consumers) should be involved from the start (WHO 2009) <u>Video learning from</u> <u>GreenFacts.org</u>

https://www.youtube.com/watch?v=PZmNZi8bon8

Case study

Risk assessment of **Cu** and **Mo** exposure through consumption of vegetables grown under the impact of Kajaran's mining complex

PRO

Mining industry is one of priority sectors of Armenia's economy.

Impact of mining industry on agriculture

Fruits and vegetables in diet

Fruits and vegetables grown under the impact of mining industry are also sold in the markets of adjacent urban areas.

Study covered the markets of KAJARAN TOWN N 39°09'17,72''C, E 46°07'46.00

HUMAN EXPOSURE ASSESSMENT

Material and method

- **SOPs** was elaborated in compliance with requirements of WHO/FAO.
- Food frequency questionnaire was elaborated to assess a diet of local population.
- Concentrations of trace elements in soil samples were estimated using a XRF analyzer (Innov X-5000).
- A Perkin Elmer AAnalyst 800 AAS was used to quantify the concentrations of trace elements in the filtrate of digested plant samples.
- Statistical analyses were carried out by Microsoft Excel и SPSS (SPSS Ins., Version 11).

VEGETABLES

DIET STUDY (FFQ)

4 food item food frequency questionnaire (FFQ)

Questionnaire N /

Dear participant, the following survey is conducted by the Informational-Analytical Center for Risk Assessment of Food Chain of the Center for Ecological-Noosphere Studies of National Sciences of RA. The survey is designed to investigate the consumption of vegetables and fruits among Yerevan residents. When answering to the questions, please, be as honest as possible because your participation is highly important.

We would like to inform that the survey is ANONYMOUS, no personal data will be recorded and the results will be presented in a general format.

Block 1. Consumption data

1. How much and how often do you consume the following products?

	Net			Commu	mption freq	uency		
Food type	consu- med	I. Every day	2. 2-4 times a week	3. Once a week	4.2-3 times a month	5. Once a month	Other	Consumption portion (daily)
L Potato								
2. Bell Pepper								
3. Tomato								
4 Cucumber								

	d		Bazaar							Supermarket							
Food type	Not consume	1. GUM	2.Malatia	3. Nor Norq	4. Komitas	5. Shengavit	6. Erchuni	Other	l. Yerevan Câty	2. SAS	3. Evrika	4.Nor Zovq	5. TITAN	Other	Vegetable gard	Other	Mention the origin of food item, if possible
1. Potato																	
2. Bell Pepper			1 1											1 i			
3 Tomato																	
4 Cocumber			8 1											1 1			

Block 2. Personal data

____/___/2017

2.1 District:							
2.2 Age:							
2.3 Gender:	□ 1) M.	□ 2) F.				
2.4 Education:	□ 1) Higher	山 2,					
2.5 Occupation:	□ 1)Employed	□ 2					
2.6 Number of family member	ns:						
2.7 Average monthly family income:	□ 1) Up to 70.000 AMD	□ 2) 71 150.000 AMD	□ 3) 151 250.000 AMD	□ 4) 251 AMD	400.000	□ 5) 400.000 AMD and more	□ 6) Refuse to answe

EDI (mg/kg/bw/day)

EDI = (C x IR x EF x ED) / (Bw x AT)

- C concentration of trace element (mg/kg)
- **IR** ingestion rate (kg/day)
- EF exposure frequency (183 day/year, for potato 365 day/year)
- **ED** exposure duration (for female 69.7, for male 63.6)
- **Bw** body weight (for female 60 kg, for male 70 kg)
- AT time over which the dose is averaged

THQ & HI

$\mathbf{THQ} = \mathbf{EDI} / \mathbf{RfD}$

$HI = \Sigma THQ$

Trace element	Oral reference dose (mg/kg/day)
Cu	0.01
Мо	0.005

The contents of trace elements in vegetables from investigated areas

■Cu ■Mo

Contents (mg/kg fresh matter) in soil samples

Soil-to-plant transfer factor of Cu and Mo

Diant gracies	Transfer factor of Cu	Transfer factor of Mo		
Plaint species	Range	Range		
Potato	0.03	0.084-0.112		
Carrot	0.014-0.018	0.026-0.047		
Bean	0.027-0.034	0.16-0.2		
Fennel	0.067-0.079	0.17-0.44		
Pumpkin	0.034-0.040	0.083-0.134		

Estimated daily intake (EDI) of Cu and Mo for males

Estimated daily intake (EDI) of Cu and Mo for females

100

■Cu ■Mo

CONCLUSIONS

• The investigation of soil-to-plant transfer of **Cu** and **Mo** indicated poor response of studied vegetables towards these element uptakes

• The **EDI** of **Mo** for all investigated vegetables exceeded the reference value, meanwhile **EDI** values of **Cu** exceeded the reference value only for potato and bean.

- The **estimated cumulative daily intake** both for male and female **exceeded** the reference dose both for **Cu** and **Mo**.
- HI > 1 values obtained indicated that there is a risk posed to the health of local population by more than one trace element.

Thank you for your kind attention!

